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We study partition of networks into basins of attraction based on a steepest ascent search for the node of
highest degree. Each node is associated with, or “attracted” to its neighbor of maximal degree, as long as the
degree is increasing. A node that has no neighbors of higher degree is a peak, attracting all the nodes in its
basin. Maximally random scale-free networks exhibit different behavior based on their degree distribution
exponent �: For small � �broad distribution� networks are dominated by a giant basin, whereas for large �
�narrow distribution� there are numerous basins, with peaks attracting mainly their nearest neighbors. We
derive expressions for the first two moments of the number of basins. We also obtain the complete distribution
of basin sizes for a class of hierarchical deterministic scale-free networks that resemble random nets. Finally,
we generalize the problem to regular networks and lattices where all degrees are equal, and thus the attrac-
tiveness of a node must be determined by an assigned weight, rather than the degree. We derive the complete
distribution of basins of attraction resulting from randomly assigned weights in one-dimensional chains.
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I. INTRODUCTION

Networks often have heterogenous structure, with differ-
ent nodes highly varying in their connectivity and in their
roles �1–4�. The problem of identifying these roles and as-
signing nodes to communities or modules based on their
function is of great interest, with many methods and algo-
rithms recently proposed �5–17�. These methods aim to in-
corporate knowledge of the global network’s structure with
information of the nodes’ local connections, to generate a
network partition. However, on a more fundamental level,
nodes can be simply distinguished according to the node that
is their “authority,” “attractor,” or, in heterogeneous net-
works, their “hub.”

The hub that each node belongs to is found by moving
recursively onto the neighbor of highest degree, or number
of connections, until the hub is reached—a node whose de-
gree is greater than that of all of its neighbors. Classifying
nodes by their hubs leads to a natural partition of the network
into basins of attraction. See Fig. 1 for a schematic illustra-
tion. This partitioning provides a quick and easy way to clas-
sify nodes based on their relation with the network’s major
players, without resorting to external information.

In general, when each node is associated with a value of a
scalar field, a “gradient network” emerges by replacing all
the links that emanate from a node by a single directed link
that points to the node’s neighbor with the highest value of
the field �18,19�. Thus, recursively following nodes of high-
est degree is equivalent to traversing the “gradient network”
formed by considering the scalar field defined by the degrees
of the nodes. Many properties of gradient networks have
been studied, such as the emerging degree distribution and its
relation to the original network topology, and the possibility
of congestion when too few nodes are receiving the flow that
is generated by the gradient �18,19�. Gradient networks have

also proved useful in the analysis of energy landscapes �20�,
and as the basis for new and improved synchronization �21�
and routing �22� methods. Here, we focus on the specific
case where the value associated with each node is the degree,
and thus does not require any external information but the
bare topology. The walk up the degree gradient identifies
each node with one of the network hubs.

The decomposition into steepest-ascent basins is of inter-
est in many systems. For example, suggested routing
schemes in communication networks involve transmitting all
packets through the hub nearest to the source �23,24�. The
size of the basins delimits the performance of such routing
algorithm. In a different field, an analysis of the energy land-
scape network of atomic clusters shows that the energy of a
configuration, or a node, decreases with the number of con-
figurations kinetically connected to it, which is its degree
�25�. Thus, as the system is cooled and its energy decreases,

FIG. 1. �Color online� Decomposition of a network into basins
of attraction. The number inside each node indicates its degree, and
the arrows point from a node to its attractor—the neighbor with
highest degree. Nodes with no neighbors of higher degree are peaks
and are highlighted in the schematic. A peak represents a basin of
attraction: All nodes which are attracted to it belong to its basin of
attraction. The basins in this schematic have different background
colors.
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configurations with higher degrees tend to be visited. The
actual partitioning into basins determines roughly whether
the system would inevitably end up in the “ideal glass state”
or arrive at one of many metastable states, depending on the
initial conditions �26,27�.

The topology of the basins is also important if one is
interested in a local strategy for finding the most connected
node. A network with a single basin would make a steepest
ascent search �in the “degree space”� successful, while a
more complicated topology would require a more sophisti-
cated approach. Finally, the properties of the basins of attrac-
tion can be used to classify networks with similar degree
distributions but otherwise different topology and function.

The algorithmic aspects of the partition method are rela-
tively simple and will be discussed briefly below. Our main
goal is to study, analytically and numerically, the statistical
properties of the basins of attraction in ensembles of maxi-
mally random scale-free �SF� networks �1–4�. We find that
the topology of basins �i.e., their number, sizes, hubs’ degree,
etc.� shows a strong dependence on the degree distribution,
and we quantify this behavior. We then study the basins’
topology in a class of deterministic hierarchical SF networks
�28,29� and show that it reflects some prominent properties
of the random networks. Finally, we generalize the problem
to the case where the “attractiveness” of each node is deter-
mined by a random number, a height rather than its degree,
and derive analytical results for the basins of attraction in
regular one- and two-dimensional lattices.

II. DEFINITIONS

We focus on �undirected� SF networks, i.e., networks in
which node degree is broadly distributed, usually in the form
P�k��k−� �m�k�N�, where k is the degree, m is the mini-
mum possible degree, N is the total number of nodes, and
��2 is the degree exponent. Many real world networks
were shown to be scale-free with ��3 �1–4�. We neverthe-
less study networks with �� �2,5�, so as to reach the near-
homogenous limit where the degree is narrowly distributed.
Our networks are static and maximally random, generated
according to the configuration model �30�: We first draw
nodes’ degrees based on the prescribed distribution, then ran-
domly connect open links until all nodes have all of their
links connected.

A precise definition of basins of attraction requires deal-
ing with several ambiguities �e.g., how to resolve tie-breaks�.
We opt for the following rules:

�1� Start the search from node i with degree ki and neigh-
bors j1 , j2 , . . . , jki

.
�2� Denote the neighbor that has the highest degree as

jmax, with degree kjmax
=max�kj1

,kj2
, . . . ,kjki

�. If the highest

degree is shared by more than one neighbor, choose one of
them arbitrarily.

�3� If ki�kjmax
, i is attracted to jmax and both belong to the

same basin of attraction.
�4� If ki�kjmax

, node i is a peak, and is attracted to itself,
forming a basin of attraction with all nodes �if exist� that are
attracted to it.

�5� Repeat for all unassigned nodes as the root of the
search. Each node now belongs to exactly one basin of at-
traction.

Note that we require ki to be strictly smaller than kjmax
for

i to be attracted to jmax; in other words, a node may be a peak
even if it has neighbors with equal degree. This choice saves
us from delving into further subtleties. The results are quali-
tatively the same independent on details of the definition �see
Appendix A for a short discussion�.

A simple and fast partitioning algorithm relies on scan-
ning the nodes in descending degree order. Then, each node
is either designated as a peak, or assigned to the basin of its
neighbor with highest degree. Because we scan by degree
order, we are guaranteed that the neighbor was already as-
signed to a basin. Thus, the running time of the algorithm
�for sparse networks� is of the order of N ln N, the time it
takes to sort the nodes �31�.

III. TOPOLOGY OF BASINS OF ATTRACTION
IN RANDOM SCALE-FREE NETWORKS

We attempt to capture the topology of the basins through
a few representative quantities which we define below. De-
note the total number of basins by Nb. Define the density of
basins as the number of basins per node and denote it as
nb�Nb /N. Denote next the basin size by s. The probability
of a basin to be of size s is P�s�. A related quantity is the
probability of a node to belong to a basin of size s, Q�s�
=NbP�s�s /N=nbsP�s� �and a particularly interesting case is
the probability of a node to be a solitary basin Q�1��. Both P
and Q are normalized probability distributions. Other mea-
sures of interest are the degrees of the peaks and the size of
the largest basin S.

In Figs. 2–5 we present simulation results for SF networks
with N=1000, minimum degree m=1,2 and varying �. The
following picture emerges from the results. For small � close
to 2, the network is dominated by one hub, attracting most of
the nodes to form a giant basin. Thus, the number of basins is
relatively small and the size of the largest basin is narrowly
distributed about S�N. The sizes of the basins and the de-
grees of the peaks show a bimodal distribution: A peak close
to N and a fast decay for small basins which are not included
in the giant basin.

FIG. 2. �Color online� Average density of basins in SF networks.
Plotted is 	nb
 vs �, as well as the density of solitary basins, Q�1�.
Simulation results �symbols�, for networks with N=1000 and m
=1,2, are matched by theory, Eqs. �2� and �B2� �solid lines�.
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For large �, a different behavior is observed. The number
of basins, Nb, is large, and most of the basins are small. The
largest basin is no longer giant, and its average size scales as
S�N� ���1�. The distribution of the degrees of the peaks
approaches the degree distribution of the entire network. The
distribution of basin sizes now exhibits power-law scaling
for small s, Q�s��s−� �or P�s��s−��+1��. We term � the
basin exponent. The minimal degree m significantly influ-
ences the basins count. For m=1 the network is usually frag-
mented, and thus many basins can form. For m�2 the net-
work is connected and consists of a single component, so the
number of basins is smaller.

The crossover between the two limiting cases of networks
with a giant basin and networks fragmented to many basins
is at about �c�2.8. This is revealed by the behavior of the
size of the largest basin S: While S�N for ���c, there is no
longer a giant basin for ���c and S�N� with ��1 �Fig. 5�.
The minimum in � also occurs at ��2.8 �Fig. 3�, and we
hypothesize that it is another reflection of the transition.

IV. THEORY

A. Random scale-free networks

1. Giant basin

The transition between a network with a giant basin to a
network fragmented to many basins is observed in the simu-

lations at about ��2.8. Interesting questions are whether
this transition becomes sharp for infinite systems, and what
is the value of �c for N→	.

A simple argument suggests that for infinite networks a
sharp transition occurs at �c=3. To understand that, consider
first the probability of a given node i of degree k to be a
peak,

Pr�i is a peak�ki = k� =  �
k�=m

k
k�P�k��

	k
 �k

, �1�

where P�k� is the degree distribution, 	k
 is the average de-
gree, and k�P�k��

	k
 is the probability that a neighboring node
�which is a node followed by a random link� has degree k�
�32�. Equation �1� results from the requirement that none of
i’s k neighbors have degree higher than k. For large k, we
substitute P�k��Ak−� and approximate the sum as an inte-
gral

�
k�=m

k

k�P�k�� = 	k
 − �
k�=k+1

	

k�P�k�� � 	k
 −
A

� − 2
k2−�.

For k
1, Eq. �1� becomes ���2�

Pr�i is a peak�ki = k� = 1 −
B

k�−2�k

� exp�− Bk3−�� ,

where B=A / �	k
��−2��. Thus, for ��3 the probability of a
node to be a peak is small, and approaches zero for large k.
Therefore, only the node with the largest degree in the net-
work can be a peak, and it will attract the giant basin. For
��3, every node with large degree is almost surely a peak.
For even larger �, ���*�3 �where �* is determined by the
small k properties of P�k�� there is no longer a giant compo-
nent in the network. In that case, the size of the largest com-
ponent scales as N1/��−1� �33�. The maximal degree of the
network has the same scaling. Since the size of the largest
basin is at least the maximal degree, but cannot exceed the
size of the largest component, we conclude that for ���*

�3, S�N� with �=1 / ��−1�. Simulation results support this

FIG. 4. �Color online� Degree of the peaks in SF networks.
Plotted is the distribution of the degree of the peaks for three values
of � �N=1000 and m=1�. Inset: For large �, the exponent � char-
acterizing the decay of the pdf �circles� follows � �solid line� very
closely.

FIG. 5. �Color online� Size of the largest basin. Plotted is the
relative size of the largest basin �S /N� vs � for SF networks with
N=103, 104, and 105, and m=1. Inset: The largest basin’s exponent
� �S�N��. For ���c, ��1 �S�N is a giant basin�, while for large
�, � approaches 1 / ��−1�.

FIG. 3. �Color online� Distribution of basin sizes in SF net-
works. Plotted is Q�s� for three values of � �N=1000, m=1�. Inset:
The basin exponent �, characterizing the power-law decay at small
s, plotted vs the degree exponent �.
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scaling �inset of Fig. 5�, but it is not known whether a tran-
sition is expected, for infinite network, at �*.

Another heuristic argument in favor of the phase transi-
tion at �c=3 is the following. Consider two nodes with de-
grees k1 and k2 close to the maximal degree K�N1/��−1� �34�.
The probability that these nodes are connected is propor-
tional to k1k2 /N �35�. Thus, the probability of the two hubs
to be connected scales as N�3−��/��−1�. Hence, for ��3 the
two largest hubs are almost surely connected. The hub with
the larger degree attracts the smaller hub, together with its
entire basin, to form the giant basin. These arguments are
supported by simulation results for increasing values of N
�Fig. 5�.

2. Number of basins and basin sizes

While we could not obtain a complete derivation of P�s�
or Q�s� for random static scale-free networks, it is possible to
obtain analytic results for a few chief quantities. Below we
derive an exact expression for 	nb
 as well as reasonable
approximations for Var�nb� and Q�1�.

Clearly, the number of peaks is equal to the number of
basins. Thus, the average basin concentration 	nb
= 	Nb
 /N is
equal to the probability of a node to be a peak. The probabil-
ity of a given node i with degree k to be a peak is given in
Eq. �1�. If the degree of i is not specified, we must condition
over all possible degrees. Thus,

	nb
 = �
k=m

	

P�k� �
k�=m

k
k�P�k��

	k
 �k

. �2�

Plugging the degree distribution into �2� completes the deri-
vation; e.g., for SF networks we substitute P�k�
=k−� /�k�=m

	 k�−�. A comparison of Eq. �2� with simulations
yields a perfect agreement �Fig. 2�.

Many real-life networks �36�, and in particular growing
ones, have � close to 2 and accordingly, a logarithmically
diverging average degree 	k
� ln N. Consequently, the k
=m term dominates Eq. �2�,

	nb
 � P�m��mP�m��m�ln N�−m + O��ln N�−�m+1�� , �3�

and we expect 	nb
��ln N�−m→0 for N→	 �such that the
finite value of 	nb
 at �→2 for m=1 in Fig. 2 is a finite size
effect�.

The calculation of the variance of Nb is more involved
since the joint probabilities for multiple peaks are not inde-
pendent. An approximate expression is given in Appendix B
and is plotted in Fig. 10. Rather than the full distribution
Q�s�, we focus on solitary basins �of size s=1�, which ac-
count for the bulk of basins. In Appendix B we derive an
approximation for Q�1� which is extremely close to simula-
tion results �see Fig. 2�.

B. Hierarchical networks

Deterministic hierarchical scale-free networks provide a
unique opportunity for an analytical treatment of networks
with broad degree distribution �28,29�. In the following we
derive analytical results for the basins topology, which repro-

duce to some extent the results for random SF networks. In
particular, hierarchical networks have a giant basin for small
�, and a power-law distribution of the basin sizes P�s� for
large �, just as was found in Sec. III for the random net-
works.

Hierarchical scale-free networks �28,29� are constructed
in a recursive fashion: In �u ,v�-flowers, each link in genera-
tion n is replaced by two parallel paths consisting of u and v
links, to yield generation n+1 �Fig. 6�; and in �u ,v�-trees,
defined in analogy to the flowers, we obtain generation n
+1 of a �u ,v�-tree by replacing every link in generation n
with a chain of u links, and attaching to each of its endpoints
chains of v /2 links �assuming v is even�. A natural choice for
the genus of flowers in generation n=1 is a cycle graph �a
ring� consisting of u+v�w links and nodes. �u ,v�-flowers
and trees were shown to have degree distribution of the form
P�k��k−�, with �=1+ ln w

ln 2 , and are thus scale-free. Consid-
ering shortest paths, �u ,v�-nets with u=1 are small worlds
and are otherwise fractals �28,29�. These and other topologi-
cal properties, such as clustering and degree-degree correla-
tions make them suitable models for real-life complex net-
works �1,2,37–39�.

We have derived the complete distribution of P�s� for all
�u ,v�-flowers and trees. This is a tedious exercise in real-
space renormalization �verified numerically on a computer�
that adds little physical insight. We thus limit the discussion
to the results themselves.

For �1,2�- and �1,3�-flowers, and �1,2�-trees, all nodes are
evenly split between the w basins peaked in the nodes form-
ing the n=1 generation. Thus, this case corresponds to the
small � limit of random SF networks, where a giant basin
attracts all nodes.

In �1,v�-flowers with v�4 �which corresponds to ��3�,
basins of size bm= 2

34m+ 1
3 �m=0,1 , . . . ,n−2� appear �v

−3�wn−m−1 times. Thus, basins of size s�4m occur with fre-
quency s−ln w/ln 4. Because the possible basin sizes are not
continuous but are exponentially spaced, this leads to a
power-law distribution P�s��s−��+1�, with basin exponent
�= ln w

ln 4 = ��−1� /2.

FIG. 6. Hierarcical scale-free �u ,v�-flowers. Shown are two ex-
amples of networks with degree exponent �=ln�u+v� / ln 2=3, with
�a� u=1, v=3 and �b� u=2, v=2. In both cases the top of the figure
illustrates the edge replacement scheme: Each edge is replaced by
two parallel paths of u and v edges. The bottom of the figure shows
flowers obtained in this way to generations n=1, 2, and 3.
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In �1,v�-trees the situation is qualitatively similar, but
more subtle, with different results for v=4 and v�4. For
�1,4�-trees, we find that basins of size bm �m=2,3 , . . . ,n
−1� appear 2wn−m−1 times. Here bm�Arm �m
1� where r is
the larger root of r2−5r+2=0, or r= 5+�17

2 =4.56. Thus,
P�s��s−��+1� with �= ln 5

ln r =1.06. For �1,v�-trees with v�4,
basins of size bm= 5

244m+ 2
3 �m=2,3 , . . . ,n−1� appear 2wn−m

times, so P�s��s−��+1� with �= ln w
ln 4 , as in �1,v�-flowers. The

size of the largest basin for all �1,v�-nets �except �1,4�-trees�
is S�N� with �=2 / ��−1�.

In �u ,v�-nets with u�2 and v�2 the number of basins of
size 2m+1 �1.52m+1 for �u ,4�-trees�, m=3,4 , . . . ,n−1, is
�w−2�wn−m for flowers and �w−3+2 /w�wn−m for trees. This
simply leads to P�s��s−�, or �=�−1. Essentially, due to the
strong disassortative nature of �u ,v�-nets with u�2 and v
�2, the basins in these networks typically consist of a peak
and its immediate neighbors, so the basin sizes mirror the
degree distribution. Indeed, the size of the largest basin S
�N1/��−1�, has the same scaling as the largest degree �28,34�.

To summarize, with the exception of �1,4�-trees,

��1,v�−nets = ��� − 1�/2, � � 3,

w giant basins, � � 3.
� �4�

��2,v�−nets = � − 1, � � 3. �5�

Key features revealed by this analysis compare favorably
with the results in random scale-free networks. The giant
basins found for hierarchical nets with ��3 parallels the
low-� phase found in random nets. The power-law decay
found for ��3 agrees with the findings for large � in ran-
dom nets, as does the increase of � with increasing �.

V. RANDOM SURFACES

The decomposition of a network into degree-based basins
of attraction is a special case of a general problem of finding
the basins when the attractiveness of a node is determined by
a certain attribute. The association of a scalar field with the
network nodes and the emergence of a “gradient network”
were suggested in �18,19� and discussed in Sec. I. Here, our
main interest is in the basins of attractions induced by the
external field. In particular, determining the attractiveness of
a node by an external parameter allows the basins of attrac-
tion to be defined in regular networks or lattices where all
sites have the same degree. As a basic example, we discuss
one- and two-dimensional lattices where each node is as-
signed a random height �or potential energy, density, etc.�
The understanding of the topology of such random surfaces
is of much importance �40,41�. For example, the number of
peaks determines the number of inherent structures in a spin
glass �42,43� or the “roof” of the surface in ballistic growth
models �44�.

The height hi of lattice site i is taken from some distribu-
tion �independently of the other lattice sites�. Without loss of
generality, one may assume the distribution is uniform, in the
interval �0,1�. Nodes are attracted to their shortest neighbor,
so that the surface is energylike �Fig. 7�. The topology of the
basins, in this case, has a clear physical interpretation: Set a

particle in each node of the lattice and let the particles follow
paths of steepest descent. When the system stops evolving,
the number of particles s in each minimum is the size of its
basin of attraction.

In one dimension, each point on the surface is either a
local maximum �peak�, a local minimum �valley�, or it has
one taller and one shorter neighbor. To find the density of
peaks we look at any three consecutive heights �h1 ,h2 ,h3�
and notice that the probability that h2 is maximal is 1 /3.
Similarly, the density of valleys is also 1 /3. The variance in
the number of peaks and/or valleys can be derived following
similar steps as for networks �Appendix B� and turns out to
be 2N /45 �42�.

Let us calculate the probability of a node to be a valley of
a basin of size s, R�s�= 	nb
P�s�. The minimal size s=1 of
the basin is obtained in the situation when the minimum is
surrounded by two taller heights whose other adjacent
heights are shorter than the minimum. If h is the height of the
minimum, the above situation occurs with probability �h�1
−h��2. Integrating over h we find the density of smallest
basins

R�1� = �
0

1

dhh2�1 − h�2 =
1

30
. �6�

For s�2, the density of basins of attraction of size s is
given by

R�s� =
2s+3

�s + 4�!
s�s + 3� −

4�s2 + 3s + 1�
�s + 3�!

. �7�

The derivation of this result is presented in Appendix C. One
can verify the validity of both the normalization requirement
and the density of valleys,

�
s�1

sR�s� = 1, �
s�1

R�s� =
1

3
= 	nb
 .

For large s, R�s��1 /s!, which decays much faster than the
power-law decay observed for networks.

In two dimensions, basins of attraction are similarly de-
fined as the set of all nodes which are attracted to a given
valley. We limit ourselves to the analytical computation of
R�s=1�, as larger basins of attraction seem to require very

FIG. 7. �Color online� Schematic representation of a random
surface in one dimension. Each node is attracted to its shortest
neighbor �with periodic boundary conditions�. The four highlighted
nodes are valleys—their neighbors are taller. All nodes attracted to
a valley belong to its basin of attraction. The four basins in the
drawing are shown in different background colors.
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tedious calculations. Let h be the height of the minimum of
an s=1 basin of attraction. The adjacent four heights must be
taller, which happens with probability �1−h�4. We write

R�1� = �
0

1

dh�1 − h�4��h� , �8�

and the chief problem is to determine the probability ��h�
that for each of the four adjacent sites there is a neighbor
which is shorter than h. Let �xi� be the heights of diagonal
sites ��1, �1�, and �yj� the heights of the sites �0, �2� and
��2,0� �we set the minimum at the origin�. The probability
��h� is given by

��h� = �1 − h�4h4 + 4h�1 − h�3h2 + 2h2�1 − h�2 + 4h2�1 − h�2h

+ 4h3�1 − h� + h4.

Indeed, one possibility is that all the xi exceed h, and then all
the yj must be shorter than h. This happens with probability
�1−h�4h4. If exactly three of the xi are taller than h, there
should be exactly two yj that are shorter than h. This explains
the term 4h�1−h�3h2. For the case that two of the xi are taller
and two shorter than h, consideration of their exact locations
leads to the term 2h2�1−h�2+4h2�1−h�2h. Finally, when at
most one xi is taller than h, there is no requirement on the yj.
Performing the integral in �8� we obtain

R�1� = 109
4290 . �9�

In the infinite-dimensional case, the random surface is
defined on top of a network, as in gradient networks �18,19�.
The only quantity that seems easily calculable is the average
number of basins 	nb
: The probability of a node of degree k
to be a valley, for randomly distributed heights, is simply
1 / �k+1�. Thus, for a network,

	nb
 = �
k

P�k�/�k + 1� . �10�

VI. SUMMARY AND DISCUSSION

In summary, we have introduced a process of steepest
ascent that partitions complex networks into basins of
attraction—subsets of nodes that are attracted to the same
peak, the node of highest degree in the basin. For random
scale-free networks we find a transition between networks
dominated by a giant basin comprising the majority of the
nodes, for ���c, to numerous, fragmented basins, for �
��c. We find numerically that �c�2.8, while theoretical ar-
guments indicate that for N→	, �c=3. Both above and be-
low the transition point, the distribution of finite basins has a
power-law tail s−��+1�, where �, the basin exponent, exhibits
a nontrivial dependence upon the degree exponent �. An ex-
act analysis of deterministic hierarchical scale-free nets ex-
hibits some of these features.

A comprehensive description of the complete distribution
of basins sizes for static random scale-free networks remains
a challenge. Furthermore, other types of networks might ex-
hibit a different basin topology. In particular, randomly
growing networks �1,45�, Erdős-Rényi networks �46�, and

networks with correlations �for example, degree-degree cor-
relations� are of interest and are left for future study.

In a sense, the association of each node with a hub and the
identification of basins of attraction provides a partition of
the network into communities. Numerous algorithms have
been proposed to address the problem of classifying nodes
into communities. Interestingly, different algorithms employ
highly diverse methods and transformations, or measures, of
the network topology. For example, many algorithms maxi-
mize the modularity index �9� by a wide spectrum of optimi-
zation techniques �10,11,13,15�. Others exploit quantities
such as betweeness centrality �5,9�, traces of random walk
�5,6,9,17�, eigenvectors of the network Laplacian �10,14,15�,
electrical conductance �7�, and others. While some algo-
rithms recursively split the network into communities sepa-
rated by “weak links” �5–7,11,13,15�, others take the bottom-
top approach and recursively merge highly similar
communities, based on various similarity indices �9,10�.
Also, while many algorithms output a dendogram �a tree�
with partition of the network into disjoint communities at all
possible levels of resolution, other studies provide an over-
lapping community structure; for example, based on identi-
fication of almost complete subgraphs �12� or mapping to
magnetic domains �8�.

How does the partition into basins of attraction compare
to other community detectors? First, most community detec-
tors are global, since they utilize as much information as
possible about the network topology in order to improve the
identification of the communities. In contrast, few other
methods �e.g., �12,47–49��, including our basins of attrac-
tion, are computed in a local manner—each node is assigned
to a community based only on its immediate neighborhood.
Second, and more important, the goal of most community
detectors is to find a partition that maximizes intracommu-
nity proximity and intercommunity separation. That usually
takes the form of maximizing the number of links within a
community while minimizing the number of links between
communities. As opposed to that, our partition to basins of
attraction addresses a different question: Which nodes are
affiliated with the same hub? While in many cases this at-
tribute is correlated with community structure, this is not
necessarily always the case, as we demonstrate in Fig. 8.

A possible outcome of our analysis is revealed when we
test two real-life networks for which the problem of basins is
of practical importance: The Internet at the Autonomous Sys-

FIG. 8. �Color online� Illustration of the difference between ba-
sins of attraction and network communities. In the plotted toy net-
work, the six nodes in the middle are fully connected and clearly
form a single community. However, the three nodes on the left-hand
side are attracted to the left hub, whereas the three nodes on the
right-hand side are attracted to the right hub. Thus, they are split
between two different basins of attraction �indicated with different
background colors and different orientation of node fill patterns�.
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tems �AS� level �50� as of 2007, and the energy landscape’s
network of Lennard-Jones clusters �25�. Both networks are
scale-free, with �=2.5,2.9, respectively. In both networks
there is a giant basin which attracts most nodes �with Veri-
zon’s AS being the peak in the Internet�, and a few tiny
basins, in agreement with the theoretical results for the
model scale-free networks. In the Lennard-Jones network, an
uphill walk in the degree space, which can be mapped in
general onto a downhill walk in the energy landscape, will
end up at the node of highest degree, which can be inter-
preted as the ideal glass state �26�. Note the different situa-
tion for the energy landscape of proteins, where the energy
increases with the degree, such that the system is expected to
follow a downhill walk in the degree space �20�.

For the Internet, the existence of a giant basin implies that
a routing scheme that forwards all messages in a steepest
ascent manner will quickly arrive at the hub. From the hub,
messages could be routed to their target according to a pre-
defined target-specific sequence embedded in the packet, as
was previously suggested �23,51�. This leads to an efficient
routing scheme which requires practically no knowledge of
the network topology at the nodes, and is thus highly scal-
able. An obvious drawback of such scheme is the congestion
generated at the hubs, which is eliminated in other methods
�for example, by routing through shortest paths when the
hubs are avoided �52�, or by walking down the congestion
gradient �22��. Therefore, the steepest ascent search might
not be of immediate applicability to the Internet itself, but is
however of interest in other newly designed communication
networks where the hubs can carry high load. In this context,
we note the interesting fact that Boguña et al. �53� also find
a transition between navigable and non-navigable network
topology at ��2.6, although in their case the navigation is
based on minimizing distances within a hidden metric space.

Our partitioning has another potential practical applica-
tions for locating the node of highest degree in various
search scenarios. A local search starting from a single node
and following a steepest ascent would always be successful
in networks with a single basin of attraction, as in scale-free
networks with ���c. With more than one basin, a strategy
could be devised for starting from a number of randomly
selected nodes to find the highest degree with a prescribed
rate of success.

A concrete example for such an application is routing in
wireless sensor networks �54�. A wireless sensor network is a
system consisting of spatially distributed autonomous de-
vices using sensors to cooperatively monitor physical or en-
vironmental conditions. In a typical sensor network, one dis-
tinguished node serves as a gateway between the sensors and
the end users, and must collect data from the nodes. Since
energy is usually a very scarce resource at the nodes, an
efficient protocol must be designed to transmit the measured
data to the base station. Thus, our steepest ascent protocol, in
which each node sends out data to its neighbor with highest
degree, is of interest. This protocol is expected to be relevant
in heterogeneous sensor networks, in which the communica-
tion range varies between the nodes �55�. Indeed, we found
�data not shown� that for a power-law distribution of com-
munication ranges ��r��r−�, there exist a regime in �� , 	r
�
parameter space for which the network collapses into a

single basin, making the steepest ascent protocol highly effi-
cient.
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APPENDIX A: ALTERNATIVE DEFINITION OF BASINS

When the weights of the nodes are taken from a discrete
distribution, as in the case where the weight is the degree of
the node, neighboring nodes may have the same weight. A
method is then required to break the tie. In Sec. II we pre-
sented an algorithm that overcomes this difficulty, which we
term the local search algorithm. The following recursive
search algorithm works as well.

Suppose the search starts at node i, and let jmax be the
neighbor�s� of i of highest degree kjmax

. Denote the number
of neighbors with degree kjmax

as q.
�1� If ki�kjmax

, i is a peak.
�2� If ki�kjmax

, i is attracted to jmax. �If there is more than
one neighbor with degree kjmax

�i.e., q�1�, select one ran-
domly.�

�3� If ki=kjmax
, mark i as visited and look for the attractor

of jmax, recursively, among unvisited nodes. If q�1, look
also for the attractors of all other neighbors of i with degree
kjmax

. Keep only the attractor of highest degree among the q
attractors.

�4� If the degree of the attractor of jmax is larger than ki, i
is attracted to jmax. If the degree of the attractor of jmax
equals ki, i is a peak.

In other words, in a search for a peak strictly higher than
its neighbors, we are allowed to surf over “ridges” of con-
nected nodes of equal degree, until either reaching a peak or
a dead end.

Despite the broad distribution of degrees in SF networks,
the majority of the nodes have the minimal degree m, or a
degree close to m. Thus, one may expect many ridges to
form and as a result, a different basin count, depending on
whether the local or recursive search is employed. For ex-
ample, in the hierarchical networks studied in Sec. VI, a
recursive search yields a single giant basin for all �1,v�-nets.
In random SF networks with large � the recursive search
method also yields fewer basins �Fig. 9�a��, which is ex-
plained by the prevalence of ridges, in this case, due to the
high density of small-degree nodes. However, broader prop-
erties of the basins topology remain unaffected by the search
algorithm: Q�s� is practically the same, for large s, as is also
the basin exponent �, extracted from either method �Fig.
9�b��.
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APPENDIX B: PROPERTIES OF THE NUMBER
OF BASINS IN SF NETWORKS

In this appendix, we calculate two quantities related to the
number of basins.

1. Variance of the number of basins

Denote by Ai the indicator of the event that node i is a
peak, such that Nb=�i=1

N Ai. To compute the variance, we
shall use the general formula

Var�Nb� = �
i=1

N

Var�Ai� + 2�
i=1

N

�
j�i

N

Cov�Ai,Aj� . �B1�

The first term on the right-hand side is easy to compute,

�
i=1

N

Var�Ai� = �
i=1

N

P�Ai��1 − P�Ai�� = N	nb
�1 − 	nb
� .

Here P�Ai� is the probability for Ai to occur. For the second
term, we get

Cov�Ai,Aj� = 	AiAj
 − 	Ai
	Aj
 = P�AiAj� − P�Ai�P�Aj� .

Let nodes i and j have degrees k1 and k2, respectively. What
is the probability for both nodes i and j to be peaks? We
condition this probability on whether i and j are connected,
which is k1k2 / �N	k
� �35�. If they are connected, and they
have different degrees, clearly only one of them can serve as
a peak. Also, we must take into account that i and j might
share common neighbors. Thus, the probability of i to be a
peak is enhanced if j is known to be one. We make the
approximation that the number of common neighbors c is
fixed once ki and kj are given, and is given by

cki,kj
� �N − 2� �

k�=m

	

P�k��
kik�

N	k

kjk�

N	k

�

kikj	k2

N	k
2 ,

since this is the probability, summing over all possible de-
grees of the node �� i , j, that it is adjacent to both i and j.
For both i and j to be peaks, if ki�kj, ki nodes need to have
degree less than ki, but only kj −c nodes need to have degree
less than kj �since the c common nodes are guaranteed to

have degree less than ki�kj�, and vice versa if ki�kj. Ap-
proximating the probabilities for two nodes without common
neighbors to be peaks as independent, we obtain

Cov�Ai,Aj� = �
k=m

	

k2�P�k��2�f�k��2�k−1�−ck,k/�N	k
�

+ 2 �
k1=m

	

�
k2�k1

P�k1�P�k2�1 −
k1k2

N	k

�

�f�k1��k1�f�k2��k2−ck1,k2

+ �
k=m

	

�P�k��21 −
k2

N	k

��f�k��2k−ck,k

− �
k=m

	

P�k��f�k��k�2

, �B2�

where f�k�=�k�=m
k k�P�k��

	k
 is the probability of a neighbor to
have degree no larger than k. The first term corresponds to
the case where the nodes are directly connected and have
identical degree; the second term is concerned with the case
when they are not directly connected, and have different de-
grees; in the third term they are not directly connected but
have equal degree; and the last term is just P�Ai�P�Aj�
= P�Ai�2. This formula is compared to simulations in Fig. 10
to find a qualitative agreement. We also plot the 	nb
�1
− 	nb
� term alone, neglecting the covariance, and find that it
is a good approximation for the case of large �.

2. Density of basins of size one

Consider a given node i with degree k and take one of its
neighbors j; suppose this neighbor j has degree k�. For i to
be a peak, k� must be less than or equal to k. For i to form a
basin of size one, j must have at least one neighbor of degree
k+1 or above, in order to be attracted to that neighbor and
not to i. If we assume that at least up to the second shell, i is
a root of a tree, we have

Q�1� = �
k=m

	

P�k� kP�k�
	k


+ �
k�=m

k−1
k�P�k��

	k

q�k,k���k

,

where

(b)(a)

FIG. 9. �Color online� Basin topology with local vs recursive search. �a� Density of basins and �b� the basin exponent � as a function of
�, in SF networks with N=1000 and m=1.
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q�k,k�� � 1 −  �
k�=m

k
k�P�k��

	k
 �k�−1

is the probability that at least one of the k�−1 neighbors
�others than i� of j has degree above k. We wrote a separate
term for the case of k�=k, since in this case we are guaran-
teed that j is not attracted to i, regardless of the degrees of
the neighbors of j. The small correction due to the case when
j has another neighbor �other than i� of degree exactly k can
be calculated analytically as well, but was found to be neg-
ligible. For �→2, when 	k
� ln N, only the k=m term is
significant, and thus Q�1��P�m��mP�m��m�ln N�−m, and al-
most all basins are solitary �see Eq. �3��. This is confirmed in
the simulations �Fig. 2�.

APPENDIX C: BASINS OF ATTRACTION IN ONE
DIMENSION

We look at the distribution of basins of attraction in one-
dimensional lattices. Consider first a valley separated by dis-
tance i from the peak on the left and distance j from the peak
on the right, such that particles from both peaks belong to its
basin of attraction. The probability of this is

Rij
++ = �

0

1

dh�i
+�h�� j

+�h� , �C1�

where, e.g., � j
+�h� is the probability that j heights to the right

of the valley of height h are ascending and the last height is
the peak which belongs to the basin of attraction of our val-
ley. The probability �k

+�h� admits an integral representation

�k
+�h� = �h�x1�¯�xk�1

xk−1�xk+1�xk

�
a=1

k+1

dxa.

Integrating over x1 , . . . ,xk−1 we recast the above integral into

�k
+�h� = �

h�xk+1�xk�1
dxkdxk+1

�xk+1 − h�k−1

�k − 1�!
,

and the remaining integration is trivial,

�k
+�h� =

�1 − h�k+1

�k + 1�!
. �C2�

Inserting this equation into �C1� we obtain

Rij
++ =

1

�i + 1�!�j + 1�!
1

i + j + 3
. �C3�

Similarly, we compute

Rij
+− = �

0

1

dh�i
+�h�� j

−�h� , �C4�

where � j
−�h� is the probability that j+1 heights to the right

of the valley of height h are ascending and the last height is
the peak which belongs to the basin of attraction of the next
valley �to its right�. The probability �k

−�h� can be written as

�k
−�h� = �h�x1�¯�xk+1�1

xk+1�xk+2�xk

�
a=1

k+2

dxa.

The two last integrations are easily performed,

�k
−�h� = �

h�x1�¯�xk�1
xk�1 − xk��

a=1

k

dxa.

Integrating over x1 , . . . ,xk−1 we recast the above integral into

�k
−�h� = �

h

1

dxkxk�1 − xk�
�xk − h�k−1

�k − 1�!
,

which is then computed to yield

�k
−�h� =

�1 − h�k+1

�k + 1�! 1 − �1 − h�
2

k + 2
� . �C5�

Plugging �C2� and �C5� into �C4� we obtain

Rij
+− =

1

�i + 1�!�j + 1�!
1

i + j + 3
−

1

�i + 1�!�j + 2�!
2

i + j + 4
.

�C6�

Since Rij
−+=Rji

+−, the last quantity to compute is

Rij
−− = �

0

1

dh�i
−�h�� j

−�h� . �C7�

Using �C5� we obtain

Rij
−− =

1

�i + 1�!�j + 1�!
1

i + j + 3

−
1

�i + 1�!�j + 1�!
2

i + j + 4
 1

i + 2
+

1

j + 2
�

+
1

�i + 2�!�j + 2�!
4

i + j + 5
. �C8�

Equation �C3� is valid when i�1, j�1, and the size of
the basin of attraction is s= i+ j+1�3. Overall, the density
of basins of attraction of type �� of size s is

FIG. 10. �Color online� Variance in number of basins for SF
networks with N=1000 and m=1. Symbols represent simulation
results, and the solid line corresponds to Eq. �B2�. The dashed line
is obtained by neglecting the covariance term and has the form
	nb
�1− 	nb
� �where 	nb
 is calculated from Eq. �2��.
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R++�s� = �
i�1,j�1

i+j=s−1

Rij
++ =

2s+1 − 2

�s + 2�!
−

2

�s + 2�s!
. �C9�

Equation �C6� is valid when i�1, j�0. The density of
basins of attraction of type �� of size s is

R+−�s� = �
i�1,j�0

i+j=s−1

Rij
+−.

Computing the sum we find

R+−�s� =
2s+1 − 2

�s + 2�!
−

1

�s + 2�s!
− 2

2s+2 − 2

�s + 3�!
+

4

�s + 3��s + 1�!
.

�C10�

Of course, R+−�s�=R−+�s�, and �C10� is valid when s�2.
Equation �C8� is valid when i�0, j�0. The density of

basins of attraction of size s and type �� is given by

R−−�s� = �
i�0,j�0

i+j=s−1

Rij
−−.

Computing the sum we find

R−−�s� =
2s+1 − 2

�s + 2�!
− 4

2s+2 − 2

�s + 3�!
+

4

�s + 3��s + 1�!
+ 4

2s+3 − 2

�s + 4�!

−
8

�s + 4��s + 2�!
, �C11�

which is valid for s�1. Defining R++�1�=R++�2�=0 and
R+−�1�=R−+�1�=0, we finally have �s�1�

R�s� = R++�s� + R+−�s� + R−+�s� + R−−�s� . �C12�

Inserting �C9�–�C11� into �C12� we arrive at the announced
result, Eq. �7�.
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